Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncol Rep ; 51(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38551172

RESUMO

Following the publication of the above article, an interested reader drew to the authors' attention that, in Fig. 1E on p. 1885, the STAT3 blots shown for the A549 and A2780 cell lines were strikingly similar, such that these data were possibly derived from the same original source where the panels were intended to show the results from differently performed experiments. Upon examining their original data, the authors have realized that an inadvertent error was made in assembling the data in the figure, and the STAT3 data shown correctly for the A549 cell line were erroneously copied across for the A2780 cell line. The corrected version of Fig. 1, showing the correct STAT3 blot for the A2780 cell line in Fig. 1E, is shown on the next page. Note that this error did not affect the overall conclusions reported in the paper. All the authors agree with the publication of this corrigendum, and are grateful to the Editor of Oncology Reports for allowing them the opportunity to publish this. They also apologize to the readership for any inconvenience caused. [Oncology Reports 39: 1883­1891, 2018; DOI: 10.3892/or.2018.6232].

2.
Antioxidants (Basel) ; 13(1)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38247540

RESUMO

The common human coronavirus (HCoV) exhibits mild disease with upper respiratory infection and common cold symptoms. HCoV-OC43, one of the HCoVs, can be used to screen drug candidates against SARS-CoV-2. We determined the antiviral effects of FDA/EMA-approved drug anastrozole (AZ) on two human coronaviruses, HCoV-OC43 and HCoV-229E, using MRC-5 cells in vitro. The AZ exhibited antiviral effects against HCoV-OC43 and HCoV-229E infection. Subsequent studies focused on HCoV-OC43, which is related to the SARS-CoV-2 family. AZ exhibited anti-viral effects and reduced the secretion of inflammatory cytokines, TNF-α, IL-6, and IL-1ß. It also inhibited NF-κB translocation to effectively suppress the inflammatory response. AZ reduced intracellular calcium and reactive oxygen species (ROS) levels, including mitochondrial ROS and Ca2+, induced by the virus. AZ inhibited the expression of NLRP3 inflammasome components and cleaved IL-1ß, suggesting that it blocks NLRP3 inflammasome activation in HCoV-OC43-infected cells. Moreover, AZ enhanced cell viability and reduced the expression of cleaved gasdermin D (GSDMD), a marker of pyroptosis. Overall, we demonstrated that AZ exhibits antiviral activity against HCoV-OC43 and HCoV-229E. We specifically focused on its efficacy against HCoV-OC43 and showed its potential to reduce inflammation, inhibit NLRP3 inflammasome activation, mitigate mitochondrial dysfunction, and suppress pyroptosis in infected cells.

3.
Antioxidants (Basel) ; 12(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-38001788

RESUMO

Herpes simplex virus 1 (HSV-1) is double-stranded DNA virus that belongs to the Orthoherpesviridae family. It causes serious neurological diseases of the central nervous system, such as encephalitis. The current U.S. Food and Drug Administration (FDA)-approved drugs for preventing HSV-1 infection include acyclovir (ACV) and valacyclovir; however, their long-term use causes severe side effects and often results in the emergence of drug-resistant strains. Therefore, it is important to discover new antiviral agents that are safe and effective against HSV-1 infection. Korean chestnut honey (KCH) has various pharmacological activities, such as antioxidant, antibacterial, and anti-inflammation effects; however, antiviral effects against HSV-1 have not yet been reported. Therefore, we determined the antiviral activity and mechanism of action of KCH after HSV-1 infection on the cellular level. KCH inhibited the HSV-1 infection of host cells through binding and virucidal steps. KCH decreased the production of reactive oxygen species (ROS) and calcium (Ca2+) following HSV-1 infection and suppressed the production of inflammatory cytokines by inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells (NF-кB) activity. Furthermore, we found that KCH inhibited the expression of the nod-like receptor protein 3 (NLRP3) inflammasome during HSV-1 infection. Taken together, the antiviral effects of KCH occur through multiple targets, including the inhibition of viral replication and the ROS-mediated NLRP3 inflammasome pathway. Our findings suggest that KCH has potential for the treatment of HSV-1 infection and related diseases.

4.
Front Immunol ; 14: 1157506, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37711616

RESUMO

Influenza is an acute respiratory disorder caused by the influenza virus and is associated with prolonged hospitalization and high mortality rates in older individuals and chronically ill patients. Vaccination is the most effective preventive strategy for ameliorating seasonal influenza. However, the vaccine is not fully effective in cases of antigenic mismatch with the viral strains circulating in the community. The emergence of resistance to antiviral drugs aggravates the situation. Therefore, developing new vaccines and antiviral drugs is essential. Castanea crenata honey (CH) is an extensively cultivated food worldwide and has been used as a nutritional supplement or herbal medicine. However, the potential anti-influenza properties of CH remain unexplored. In this study, the in vitro and in vivo antiviral effects of CH were assessed. CH significantly prevented influenza virus infection in mouse Raw264.7 macrophages. CH pretreatment inhibited the expression of the viral proteins M2, PA, and PB1 and enhanced the secretion of proinflammatory cytokines and type-I interferon (IFN)-related proteins in vitro. CH increased the expression of RIG-1, mitochondrial antiviral signaling (MAVS) protein, and IFN-inducible transmembrane protein, which interferes with virus replication. CH reduced body weight loss by 20.9%, increased survival by 60%, and decreased viral replication and inflammatory response in the lungs of influenza A virus-infected mice. Therefore, CH stimulates an antiviral response in murine macrophages and mice by preventing viral infection through the RIG-1-mediated MAVS pathway. Further investigation is warranted to understand the molecular mechanisms involved in the protective effects of CH on influenza virus infection.


Assuntos
Mel , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Imunidade Inata , Antivirais/farmacologia , Antivirais/uso terapêutico
5.
Acta Pharm Sin B ; 13(1): 174-191, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36815046

RESUMO

The development of drug-resistant influenza and new pathogenic virus strains underscores the need for antiviral therapeutics. Currently, neuraminidase (NA) inhibitors are commonly used antiviral drugs approved by the US Food and Drug Administration (FDA) for the prevention and treatment of influenza. Here, we show that vitisin B (VB) inhibits NA activity and suppresses H1N1 viral replication in MDCK and A549 cells. Reactive oxygen species (ROS), which frequently occur during viral infection, increase virus replication by activating the NF-κB signaling pathway, downmodulating glucose-6-phosphate dehydrogenase (G6PD) expression, and decreasing the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response activity. VB decreased virus-induced ROS generation by increasing G6PD expression and Nrf2 activity, and inhibiting NF-κB translocation to the nucleus through IKK dephosphorylation. In addition, VB reduced body weight loss, increased survival, decreased viral replication and the inflammatory response in the lungs of influenza A virus (IAV)-infected mice. Taken together, our results indicate that VB is a promising therapeutic candidate against IAV infection, complements existing drug limitations targeting viral NA. It modulated the intracellular ROS by G6PD, Nrf2 antioxidant response pathway, and NF-κB signaling pathway. These results demonstrate the feasibility of a multi-targeting drug strategy, providing new approaches for drug discovery against IAV infection.

6.
Nutrients ; 14(19)2022 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-36235822

RESUMO

Despite the recent development of RNA replication-targeted COVID-19 drugs by global pharmaceutical companies, their prescription in clinical practice is limited by certain factors, including drug interaction, reproductive toxicity, and drug resistance. COVID-19 drugs with multiple targets for the SARS-CoV-2 life cycle may lead to a successful reduction in drug resistance as well as enhanced therapeutic efficacy, and natural products are a potential source of molecules with therapeutic effects against COVID-19. In this study, we investigated the inhibitory efficacy of mulberrofuran G (MG), a component of Morus alba L., also known as mulberry, which has been used as food and traditional medicine, on the binding of the spike S1 receptor-binding domain (RBD) protein to the angiotensin-converting enzyme 2 (ACE2) receptor, which is the initial stage of the SARS-CoV-2 infection. In competitive enzyme-linked immunosorbent assays, MG effectively blocked the spike S1 RBD: ACE2 receptor molecular binding, and investigations using the BLItz system and in silico modeling revealed that MG has high affinity for both proteins. Finally, we confirmed that MG inhibits the entry of SARS-CoV-2 spike pseudotyped virus and a clinical isolate of SARS-CoV-2 into cells, suggesting that MG might be a promising therapeutic candidate for preventing SARS-CoV-2 binding to the cell surface during early infection.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Morus , Enzima de Conversão de Angiotensina 2 , Benzofuranos , Humanos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/química , Terpenos
7.
Biomed Pharmacother ; 156: 113780, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36228379

RESUMO

Influenza viruses cause respiratory infections in humans with high morbidity and mortality rates. Neuraminidase inhibitors such as oseltamivir and peramivir are the most commonly used drugs for influenza virus infections. However, the emergence of resistant viruses necessitates the urgent need to develop next-generation anti-influenza drugs. Soybean (Glycine max L. Merr.) is widely cultivated and used as food worldwide. In addition, soybean has long been used as a nutritional supplement and herbal medicine. However, the potential anti-influenza properties of the soybean cultivar "GL 2626/96″ (SG2626) are yet to be investigated. Herein, we determined whether the ethanolic extract of SG2626 (SG2626E) has anti-viral activity through performing SG2626E pre-, co-, and post-treatment assays, using the influenza green fluorescent protein (GFP)-tagged influenza A/PR/8/34 (A/PR/8/34-GFP) virus. SG2626E showed anti-influenza virus activity in pre- and co-treated cells in a dose-dependent manner, but not in post-treated cells. SG2626E imparted a considerable inhibitory effect on influenza A virus (IAV) infection through blocking viral attachment. SG2626E inhibited the activity of viral hemagglutinin, but not viral neuraminidase of the IAV. SG2626E inhibited IAV infection by reducing intracellular calcium levels in infected human lung epithelial A549 cells. Additionally, SG2626E reduced body weight loss, decreased mortality, and increased the survival rate through reducing viral replication in the lungs of IAV-infected mice. Overall, these results suggest that SG2626E inhibits IAV infection and is a potential novel anti-influenza agent.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Camundongos , Animais , Antivirais/farmacologia , Neuraminidase , Glycine max , Influenza Humana/tratamento farmacológico , Replicação Viral , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
8.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293371

RESUMO

There has been an immense effort by global pharmaceutical companies to develop anti-COVID-19 drugs, including small molecule-based RNA replication inhibitors via drug repositioning and antibody-based spike protein blockers related to cell entry by SARS-CoV-2. However, several limitations to their clinical use have emerged in addition to a lack of progress in the development of small molecule-based cell entry inhibitors from natural products. In this study, we tested the effectiveness of kuwanon C (KC), which has mainly been researched using in silico docking simulation and can serve as an effective building block for developing anti-COVID-19 drugs, in blocking the spike S1 RBD:ACE2 receptor interaction. KC is a natural product derived from Morus alba L., commonly known as mulberry, which has known antiviral efficacy. Molecular interaction studies using competitive ELISA and the BLItz system revealed that KC targets both the spike S1 RBD and the ACE2 receptor, successfully disrupting their interaction, as supported by the in silico docking simulation. Furthermore, we established a mechanism of action by observing how KC prevents the infection of SARS-CoV-2 spike pseudotyped virus in ACE2/TPRSS2-overexpressing HEK293T cells. Finally, we demonstrated that KC inhibits clinical isolates of SARS-CoV-2 in Vero cells. Future combinations of small molecule-based cell entry inhibitors, such as KC, with the currently prescribed RNA replication inhibitors are anticipated to significantly enhance the efficacy of COVID-19 therapies.


Assuntos
Produtos Biológicos , Tratamento Farmacológico da COVID-19 , Morus , Chlorocebus aethiops , Animais , Humanos , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Glicoproteína da Espícula de Coronavírus/metabolismo , Morus/metabolismo , Células Vero , Células HEK293 , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Antivirais/farmacologia , Preparações Farmacêuticas , RNA/metabolismo
9.
Antioxidants (Basel) ; 11(9)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36139847

RESUMO

Herpes simplex Type 1 (HSV-1) is a neurotropic virus that infects the peripheral and central nervous system. Usually, after primary infection in epithelial cells, HSV-1 migrates retrograde to the peripheral nervous system (PNS), where it establishes a latent infection. HSV-1 can remain latent in the nervous system, and its reactivation in the brain can rarely cause acute HSV-1 encephalitis, often a life-threatening condition, or asymptomatic reactivations that could lead to neuronal damage and ultimately neurodegenerative disorders. Acyclovir and related nucleoside analogs have been used as therapeutic agents for HSV-1 infection, but resistance to the drug can arise, and the protective effect of HSV-1 on brain cells is limited. Therefore, there is an urgent need for research into safe and effective new antiviral agents that can protect brain cells from the damage that is caused by HSV-1 infection. Vaccinium bracteatum Thunb. (VBT) is widely distributed in Korea and China, and has pharmacological actions such as anti-inflammatory, antioxidant, and antidiabetic activity. Studies on the antiviral effect of VBT on HSV-1 infection have not been reported so far. Therefore, we sought to determine the HSV-1 antiviral effect and molecular mechanism of VBT at the cellular level. We confirmed that VBT repressed the VP16 and IE genes in both Vero and SK-N-SH cells. We also found that the generation of HSV-1 virions was inhibited by VBT treatment. VBT inhibited the activities of the HSV-1-induced endoplasmic reticulum (ER) stressors PERK, ATF4, and CHOP. We confirmed that VBT inhibited the activity of apoptosis factors by regulating the expression of death receptor (DR) after HSV-1 infection. As HSV-1 is closely associated with brain diseases, the study of the antiviral drug effects and mechanism of VBT is meaningful. Further studies using animal models of infection will also be performed to determine the potential of VBT as an antiviral agent.

10.
Oncol Lett ; 23(3): 94, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35154425

RESUMO

Breast cancer is one of the most common malignant tumors in women worldwide, and is a major cause of mortality and morbidity in cancer patients. Constitutive activation of STAT3 has been found in a variety of malignant tumors, including breast cancer. Since STAT3 activation is capable of regulating various important features of tumor cells, identification of a novel STAT3 inhibitor is considered a potential strategy for treating breast cancer. The aim of the present study was to examine whether minecoside (MIN), an active compound extracted from Veronica peregrina L., exerts an antitumor effect by inhibiting STAT3 signaling pathway in MDA-MB-231 cells. The results revealed that MIN inhibited the constitutive STAT3 activation in a dose- and time-dependent manner. MIN also blocked the nuclear translocation of STAT3 and suppressed STAT3-DNA binding. In addition, MIN downregulated the STAT3-mediated expression of proteins such as Bcl-xL, Bcl-2, CXCR4, VEGF, and cyclin D1. Subsequently, MIN promoted the caspase-dependent apoptosis in MDA-MB-231 cells. Overall, results of the present study provide evidence that MIN exerted anticancer activity via inhibition of the STAT3 signaling pathway. Further studies using animal models are required to determine the potential of this molecule as an anticancer drug.

11.
Molecules ; 26(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34834150

RESUMO

Alzheimer's disease (AD) is a severe neurodegenerative disorder. AD is pathologically characterized by the formation of intracellular neurofibrillary tangles, and extracellular amyloid plaques which were comprised of amyloid-beta (Aß) peptides. Aß induces neurodegeneration by activating microglia, which triggers neurotoxicity by releasing various inflammatory mediators and reactive oxygen species (ROS). Nuclear factor-kappa B (NF-κB) is expressed in human tissues including the brain and plays an important role in Aß-mediated neuronal inflammation. Thus, the identification of molecules that inhibit the NF-κB pathway is considered an attractive strategy for the treatment and prevention of AD. Isoorientin (3',4',5,7-Tetrahydroxy-6-C-glucopyranosyl flavone; ISO), which can be extracted from several plant species, such as Philostachys and Patrinia is known to have various pharmacological activities such as anticancer, antioxidant, and antibacterial activity. However, the effect of ISO on Aß-mediated inflammation and apoptosis in the brain has yet to be elucidated. In the present study, we investigated whether ISO regulated Aß-induced neuroinflammation in microglial cells and further explored the underlying mechanisms. Our results showed that ISO inhibited the expression of iNOS and COX-2 induced by Aß25-35. And, it inhibited the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). In addition, ISO reduced the ROS production in Aß25-35-induced BV2 cells and inhibited NF-κB activation. Furthermore, ISO blocked Aß25-35-induced apoptosis of BV2 cells. Based on these findings, we suggest that ISO represents a promising therapeutic drug candidate for the treatment and prevention of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Luteolina , Microglia/metabolismo , NF-kappa B/metabolismo , Fragmentos de Peptídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Luteolina/química , Luteolina/farmacologia , Camundongos , Microglia/patologia
12.
Antioxidants (Basel) ; 10(10)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34679772

RESUMO

HSV-1 is a neurotropic virus that replicates lytically during acute infection and establishes latency in peripheral neurons. Currently, the clinically approved compounds for the prevention of HSV-1 infection include acyclovir and penciclovir; however, long-term use of the drug is associated with serious side effects, and drug-resistant strains often appear. Therefore, it is important to find a safe and novel antiviral agent for HSV-1 infection. Quercus acuta Thunb. (Fagaceae) (QA) is widely distributed as an ornamental and dietary plant in Korea, Taiwan, China, and Japan. Thus far, the effects of QA extract and its active ingredients are known to have antioxidant, antibacterial, and anti-inflammatory activity, but studies of possible antiviral effects have not been reported. We studied the antiviral effects and molecular mechanism of QA after HSV-1 infection at the cellular level. We confirmed that QA suppresses ROS expression after HSV-1 infection and also suppresses inflammatory cytokine expression through inhibition of NF-кB activity. In addition, we found that QA increases the phosphorylation activity of IRF3 through induction of TBK1 activity during HSV-1 infection. QA exhibits an antiviral effect, and we confirmed through UPLC-DAD-mass spectrometer (MS)/MS analysis that it contains five main components: catechin, chlorogenic acid, fraxin, isoquercitrin, and taxifolin. Of these, isoquercitrin was confirmed to exhibit an antiviral effect on SK-N-SH cells through ICP27 inhibition. Overall, our results suggest that QA is a novel inhibitor with antiviral effects against HSV-1 infection and may be used specifically to prevent and treat of herpes simplex virus encephalitis infection.

13.
Biomol Ther (Seoul) ; 28(5): 381-388, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32668144

RESUMO

Methamphetamine (METH) is a highly addictive psychostimulant and one of the most widely abused drugs worldwide. The continuous use of METH eventually leads to drug addiction and causes serious health complications, including attention deficit, memory loss and cognitive decline. These neurological complications are strongly associated with METH-induced neurotoxicity and neuroinflammation, which leads to neuronal cell death. The current review investigates the molecular mechanisms underlying METH-mediated neuronal damages. Our analysis demonstrates that the process of neuronal impairment by METH is closely related to oxidative stress, transcription factor activation, DNA damage, excitatory toxicity and various apoptosis pathways. Thus, we reach the conclusion here that METH-induced neuronal damages are attributed to the neurotoxic and neuroinflammatory effect of the drug. This review provides an insight into the mechanisms of METH addiction and contributes to the discovery of therapeutic targets on neurological impairment by METH abuse.

14.
Biomol Ther (Seoul) ; 28(6): 519-526, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32466633

RESUMO

Methamphetamine (MA) is one of the most commonly abused drugs in the world by illegal drug users. Addiction to MA is a serious public health problem and effective therapies do not exist to date. It has also been reported that behavior induced by psychostimulants such as MA is related to histone deacetylase (HDAC). MeBib is an HDAC6 inhibitor derived from a benzimidazole scaffold. Many benzimidazole-containing compounds exhibit a wide range of pharmacological activity. In this study, we investigated whether HDAC6 inhibitor MeBib modulates the behavioral response in MA self-administered rats. Our results demonstrated that the number of active lever presses in MA self-administered rats was reduced by pretreatment with MeBib. In the hippocampus of rats, we also found MA administration promotes GluN2B, an NMDA receptor subunit, expression, which results in sequential activation of ERK/CREB/BDNF pathway, however, MeBib abrogated it. Collectively, we suggest that MeBib prevents the MA seeking response induced by MA administration and therefore, represents a potent candidate as an MA addiction inhibitor.

15.
Int J Oncol ; 56(3): 821-834, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32124960

RESUMO

Tumor necrosis factor­associated apoptosis­inducing ligand (TRAIL) is considered to be a potential therapeutic target for various types of cancer. However, colon cancer is difficult to treat due to its resistance to TRAIL. Therefore, various trials have been conducted to overcome TRAIL resistance in colon cancer. The present study aimed to determine whether icariin (ICA) may sensitize human colon cancer cells to TRAIL­induced apoptosis in vitro and in vivo. In the investigation of the effect of ICA on TRAIL­induced apoptosis, the LIVE/DEAD assay results demonstrated that TRAIL plus ICA synergistically induced apoptosis in 49% of HCT116 colon cancer cells. These results were confirmed using long­term colony formation assay. ICA potentiated TRAIL­induced apoptosis by modulating the expression of apoptotic proteins and the induction of cell surface death receptors (DRs) 4 and 5. Upregulation of DRs by ICA was also observed at the transcriptional level by RT­PCR. The expression of DR by ICA was increased through the production of reactive oxygen species (ROS). The results also suggested that increased expression of DR by ICA may be due to the activation of ERK and induction of the transcription factor CCAAT enhancer­binding protein homologous protein (CHOP). NAC, a ROS scavenger, reduced the effect of ICA on ERK activation, DR induction and sensitization of TRAIL­induced apoptosis. In addition, ICA enhanced the effects of TRAIL to reduce tumor growth in an in vivo xenograft mouse model. Overall, the present study provided evidence that ICA sensitized tumor cells to TRAIL­induced apoptosis via ROS­, ERK­ and CHOP­mediated upregulation of DR5 and DR4. Based on these results, it is suggested that the antitumor activity of ICA and TRAIL co­treatment in vitro and in vivo may be used as an effective therapeutic agent in chemotherapy.


Assuntos
Neoplasias do Colo/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Flavonoides/administração & dosagem , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/administração & dosagem , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Sinergismo Farmacológico , Flavonoides/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Humanos , Masculino , Camundongos , Ligante Indutor de Apoptose Relacionado a TNF/farmacologia , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Planta Med ; 86(5): 331-337, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32016931

RESUMO

Metastasis, which is closely linked to cancer-related deaths, is a highly complex process. It is an organ-specific process and involves interactions between the host and cancer cells. CXC chemokine receptor 4 is known to be expressed in various tumors and the binding with CXC ligand 12 induces signaling in cancer cell survival, migration, and proliferation. Particularly, the CXC chemokine receptor 4/CXC ligand 12 axis is known to promote the metastasis of breast cancer. Thus, agents that can downregulate CXC chemokine receptor 4 expression have potential against cancer metastasis. Minecoside is an active compound extracted from Veronica peregrina L. It is widely distributed in Korea and has been used as a traditional drug for the treatment of various chronic diseases. However, the anticancer and anti-inflammatory effects of minecoside have yet to be clarified. In this study, we found that minecoside downregulates constitutive CXC chemokine receptor 4 expression in MDA-MB-231 breast cancer cells. This downregulation also occurred at the transcriptional level. Minecoside-mediated suppression of CXC chemokine receptor 4 expression inhibited CXC ligand 12-induced invasion of breast and colorectal cancer cells. Overall, our results suggest that minecoside can be a novel anticancer agent that can inhibit cancer metastasis through inhibition of CXC chemokine receptor 4 expression.


Assuntos
Neoplasias da Mama , Neoplasias do Colo , Linhagem Celular Tumoral , Movimento Celular , Regulação para Baixo , Humanos , Invasividade Neoplásica , Receptores CXCR4
17.
Phytomedicine ; 51: 181-190, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30466615

RESUMO

BACKGROUND: Icariin is pharmacologically active prenylated flavonoid glycoside that has various biologic effects such as antioxidant, anticancer, and anti-inflammatory activities. In addition, icariin has been used in Chinese medicine for thousands of years to treat osteoporosis and it is still being used today. However, direct mechanism of icariin in the treatment of bone disease is not understood. PURPOSE: The purpose of this study is to investigate whether icariin influences RANKL-induced osteoclast formation in murine macrophages. METHODS: Osteoclastogenesis was determined by TRAP staining and activity assay. Inhibition of signaling pathways and marker protein expression were evaluated by western blot analysis. The NF-κB (p65) nuclear localization was detected by immunofluorescence assay, and NF-κB/DNA-binding activity was detected by electrophoretic mobility shift assay (EMSA). RESULTS: In our study, icariin inhibited the differentiation of pre-osteoclast cells into osteoclasts and suppressed expression of various genes involved in osteoclast formation and bone resorption. Also, icariin blocked the osteoclastogenesis induced by MCF7 and MDA-MB-231 breast cancer cells through inhibition of NF-κB activation. We found that icariin inhibited RANKL-stimulated TRAF-6 expression, and subsequently suppressed the phosphorylation of ERK, but icariin did not show an effect on p38, JNK, and Akt activation. CONCLUSION: These results indicate that icariin is likely to be a candidate for bone-related disease treatment and that icariin provides insights into the molecular mechanisms that influence RANKL-induced osteoclast differentiation.


Assuntos
Flavonoides/farmacologia , Sistema de Sinalização das MAP Quinases , Osteoclastos/efeitos dos fármacos , Ligante RANK/metabolismo , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Reabsorção Óssea/metabolismo , Diferenciação Celular/efeitos dos fármacos , Regulação da Expressão Gênica , Macrófagos/efeitos dos fármacos , Camundongos , NF-kappa B/metabolismo , Osteoporose/metabolismo , Células RAW 264.7 , Fator de Transcrição RelA/metabolismo
18.
Oncol Rep ; 39(4): 1883-1891, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29393468

RESUMO

Signal transducer and activator of transcription 3 (STAT3) is involved in the survival, proliferation, angiogenesis, invasion and metastasis of tumor cells. In addition, interleukin-6 (IL-6) has been reported to be closely related to STAT3 activity. In the present study, we investigated whether crocin, a major glycosylated carotenoid derived from saffron, can modulate the IL-6/STAT3 pathway to induce growth inhibition and sensitivity to cancer cell apoptosis. We determined that crocin inhibited STAT3 activation induced by IL-6 in hepatocellular carcinoma Hep3B and HepG2 cells. STAT3 suppression was mediated through the inactivation of Janus kinase 1/2(JAK1, JAK2) and Src kinase in both liver cancer cell lines. Furthermore, crocin induced the expression of protein tyrosine phosphatase (PTP) SHP-1, which led to STAT3 dephosphorylation. Deletion of the SHP-1 gene by siRNA recovered the inhibitory effects of crocin, suggesting an important role for SHP-1. Moreover, crocin downregulated the expression of STAT3-regulated anti-apoptotic (Bcl-2, survivin), proliferative (cyclin D1), invasive (CXCR4) and angiogenic (VEGF) proteins. Conversely, crocin increased the pro-apoptotic (BAX) protein, which was correlated with the induction of apoptosis and inhibition of proliferation. Overall, these results provide evidence that crocin has the potential for anticancer activity through inhibition of the IL-6/STAT3 signaling pathway, especially in liver cancer.


Assuntos
Carotenoides/administração & dosagem , Interleucina-6/genética , Neoplasias Hepáticas/tratamento farmacológico , Fator de Transcrição STAT3/genética , Apoptose/efeitos dos fármacos , Carotenoides/química , Proliferação de Células/efeitos dos fármacos , Crocus/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Janus Quinase 1/genética , Janus Quinase 2/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Quinases da Família src/genética
19.
J Cell Biochem ; 118(10): 3290-3298, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28295507

RESUMO

The aim of the present study is to investigate the effect of a natural compound crocin, one of the active components of saffron, on human multiple myeloma cells. Crocin effectively suppressed constitutive STAT3 activation, translocation of STAT3 to the nucleus, and its target gene expression. The suppression of STAT3 was mediated through the inhibition of activation of protein tyrosine kinases JAK1, JAK2, and c-Src. We found that crocin induced the expression of SHP-1, a tyrosine protein phosphatase, and pervanadate treatment reversed the crocin-induced downregulation of STAT3, suggesting the involvement of a protein tyrosine phosphatase. Moreover, suppression of SHP-1 by its inhibitor overturned the effect of crocin on induction of SHP-1 and the inhibition of STAT3 activation. Finally, crocin downregulated the expression of STAT3-mediated gene products including anti-apoptotic (Bcl-2), pro-apoptotic (BAX), invasive (CXCR4), angiogenic (VEGF), and cell cycle regulator (cyclin D1), which are correlated with suppression of proliferation, the accumulation of cells in sub-G1 phase of cell cycle, and induction of apoptosis. Overall, our results suggested that crocin is a novel inhibitor of STAT3 activation pathway and thus may have potential in prevention and treatment of human multiple myeloma. J. Cell. Biochem. 118: 3290-3298, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Carotenoides/farmacologia , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Fator de Transcrição STAT3/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/genética , Indução Enzimática/efeitos dos fármacos , Indução Enzimática/genética , Fase G1/efeitos dos fármacos , Fase G1/genética , Células HeLa , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Proteínas de Neoplasias/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Fator de Transcrição STAT3/genética
20.
Integr Cancer Ther ; 16(2): 244-251, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27160279

RESUMO

Cysteine X cysteine (CXC) chemokine receptor 4 (CXCR4) and C-X-C motif chemokine 12 (CXCL12) were originally identified as chemoattractants between immune cells and sites of inflammation. Since studies have validated an increased level of CXCL12 and its receptor in patients with colorectal cancers, CXCL12/CXCR4 axis has been considered as a valuable marker of cancer metastasis. Therefore, identification of CXCR4 inhibitors has great potential to abrogate tumor metastasis. Onbaekwon (OBW) is a complex herbal formula that is derived from the literature of traditional Korean medicine Dongeuibogam. In this study, we demonstrated that OBW suppressed CXCR4 expression in various cancer cell types in a concentration- and time-dependent manner. Both proteasomal and lysosomal inhibitors had no effect to prevent the OBW-induced suppression of CXCR4, suggesting that the inhibitory effect of OBW was not due to proteolytic degradation but occurred at the transcriptional level. Electrophoretic mobility shift assay further confirmed that OBW could block endogenous activation of nuclear factor kappa B, a key transcription factor that regulates the expression of CXCR4 in colon cancer cells. Consistent with the aforementioned molecular basis, OBW abolished cell invasion induced by CXCL12 in colon cancer cells. Together, our results suggest that OBW, as a novel inhibitor of CXCR4, could be a promising therapeutic agent contributing to cancer treatment.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Invasividade Neoplásica/patologia , Extratos Vegetais/farmacologia , Plantas Medicinais/química , Receptores CXCR4/antagonistas & inibidores , Linhagem Celular Tumoral , Quimiocina CXCL12/antagonistas & inibidores , Colo/efeitos dos fármacos , Colo/metabolismo , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células Hep G2 , Humanos , Medicina Tradicional Coreana/métodos , NF-kappa B/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...